Generalized m-th Order Jacobi Theta Functions And The Macdonald Identities
نویسندگان
چکیده
We describe a m-th order generalization of Jacobi’s theta functions and use these functions to construct classes of theta function identities in multiple variables. These identities are equivalent to the Macdonald identities for the seven infinite families of irreducible affine root systems. They are also equivalent to some elliptic determinant evaluations proven recently by H. Rosengren and M. Schlosser.
منابع مشابه
Cyclic Identities Involving Ratios of Jacobi Theta Functions
Identities involving cyclic sums of terms composed from Jacobi elliptic functions evaluated at p equally shifted points were recently found. The purpose of this paper is to re-express these cyclic identities in terms of ratios of Jacobi theta functions, since many physicists prefer using Jacobi theta functions rather than Jacobi elliptic functions.
متن کاملA New Class of Theta Function Identities in Two Variables
We describe a new series of identities, which hold for certain general theta series, in two completely independent variables. We provide explicit examples of these identities involving the Dedekind eta function, Jacobi theta functions, and various theta functions of Ramanujan. Introduction Let z ∈ H = {x+ yi : x, y ∈ R, y > 0} and for each x ∈ R set q = exp(2πixz) and e(x) = exp(2πix). The Dede...
متن کاملOn the Fourier Developments of a Certain Class of Theta Quotients
where ûa(z, q) is a Jacobi theta function and k is a positive integer. In the first place, we shall derive the Fourier developments which represent these functions in a certain strip of the complex plane; it will be seen that the Fourier coefficients of *a(z) depend on those of 4>*a(z)i $ = 1 ,2 ,3 , • • • , & — 1, through a recurrence relation of order k. Secondly, these developments, in co...
متن کاملInfinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions
In this paper we derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi’s 4 and 8 squares identities to 4n2 or 4n(n + 1) squares, respectively, without using cusp forms. In fact, we similarly generalize to infinite families all of Jacobi’s explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical t...
متن کاملCyclic Identities Involving Jacobi Elliptic Functions. II
Abstract: Identities involving cyclic sums of terms composed from Jacobi elliptic functions evaluated at p equally shifted points on the real axis were recently found. These identities played a crucial role in discovering linear superposition solutions of a large number of important nonlinear equations. We derive four master identities, from which the identities discussed earlier are derivable ...
متن کامل